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Introduction

The aim of this project was to study the scaling properties of one dimensional
Edward-Wilkinson and Kardar-Parisi-Zhang surfaces using simulations. A
number of interesting phenomena can be described in terms of the motion
of an interface between two phases of matter. Crystal growth, propagation
of flame fronts, fluid displacement in porous media, and growth of bacterial
colonies are a few examples which are important from both the theoretical
and practical point of view. Despite the multitude of different microscopic
mechanisms underlying these phenomena, they all exhibit remarkably similar
growth dynamics.

There was a surge of activity in the field of surface dynamics in 1980s.
Edward and Wilkinson proposed a model described by a linear Langevin
equation. A seminal paper by Family and Viscek in 1985 on scaling of sur-
faces set the foundation for much of the future work. The theory of self-affine
curves was being simultaneously developed by Mandelbrot, Voss and others.
In a 1986 paper Kardar, Parisi, and Zhang (KPZ) proposed a nonlinear con-
tinuum equation for describing the dynamics of growing surfaces. This model
correctly predicted the critical exponents of ballistic deposits. Although this
is a non-equilibrium process, surface growth shows striking similarities with
the critical behavior of phase transitions of systems in equilibrium.

Firstly a brief summary of the general principles of dynamic scaling and
self-affinity is given. Theoretical treatment of the EW model is followed
by the simulation results of the random deposition With surface relaxation
model.. Rigorous theoretical analysis of the KPZ equation was not done
due to shortage of time. Finally simulation results of the ballistic deposition
model are reported.
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Dynamic Scaling

We will be concerned with the study of dynamics of surface growth and
morphology of resulting surfaces. A surface in d + 1 dimensions is defined
as the highest part of an aggregate formed by deposition of vertically falling
particles. Substrate is assumed to be a dimensional horizontal lattice. All
the surfaces in this report will be 1+1 dimensional. Height of a surface at
a lattice site is the height of the corresponding column. Mean height and
surface width are defined as,

¯h(t) =
L∑
i=1

h(i, t)

L

w(L, t) =

√
1

L
(h(i, t)− h̄)2

where, h(i, t) is the height of the ’i’th column and L is the length of the
substrate. Width is a quantitative measure of the roughness of the surface.

For a general surface, the width evolves with time as shown in,. Width
initially grows as a power law with time but eventually saturates after a
crossover time t×. It follows the following laws,

w(L, t) ∼ tβ t << t×

wsat(L) ∼ Lα t << t×

t× ∼ Lz

β is called the growth exponent, α the roughness exponent and z the dynamic
exponent. These are not independent of each other as can be seen from,

w(t×) ∼ tβ× w(t×) ∼ Lz

Thus we get the scaling law,
z = α/β

These laws suggest the following relation called the Family-Viscek scaling
relation,

w(L, t) ∼ Lαf(t/Lz)

f is called the scaling function. It shows the following asymptotic behavior,

f(u) ∼ uβ t << t×

f(u) = constatnt t >> t×
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Figure 1: Collapse of surface width dynamics[1]

If w/wsat is plotted against t/t×, the curves for different L values collapse
onto the scaling function. The saturation of surface width is a consequence of
height correlations spreading across the surface over time. From the scaling
relations following can be deduced about the correlation length parallel to
the surface,

ξ|| ∼ t1/z t << t×

ξ|| = L t >> t×

The height difference correlation function has the scaling form,

c(r, 0) ∼ r2α r << L

c(0, t) ∼ t2β t << t×

These three scaling exponents characterize the growth models and define the
universality classes.

Self-affinity

The expressions describing the scaling properties of the surface width can
now be used to treat the dynamic scaling of the surface itself. Let,

h̄(r) = h(r)h̄,

which is the deviation of the surface from its average. The scaling laws
suggest the following form for h̄(x),

h̄(r) = tβf(r/t1/z)
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where,
f(x) ∼ L−αf(Lx) y << 1

|f(x)| < 1 y >> 1

A function with these properties is called a self-affine function, with self-affine
exponent α. This Relation formulates in general terms the fact that a self-
affine function must be rescaled in a different way horizontally and vertically:
if we ’blow up’ the function with a factor b horizontally, it must be ’blown
up’ with a factor b” vertically in order that the resulting object overlaps the
object obtained in the previous generation. A saturated surface satisfies this
relation in a statistical sense and is thus termed a random self-affine fractal.

The dynamic scaling relation and the self-affine property of surfaces por-
tray a striking similarity between surface growth dynamics and the critical
state of equilibrium phase transitions.

Random deposition

The simplest growth model is when particles are randomly generated at a
position and deposited at the top of the column underneath it. This is called
the random deposition model (RD). The columns of a generated RD surface
have no correlation with each other and thus each column grows indepen-
dently. Because of this, we cannot expect the surface to reach any saturated
state. The probability that a column has height h after the deposition of N
particles is,

P (h,N) =

(
N

h

)
ph(1− p)(N−h)

Thus the width evolves as,

w2(t) =< h2 > − < h >2=
N

L
(1− 1

L
)

Therefore,
β = 2

α and β are not defined for this model. A stochastic continuum growth
equation can be associated with RD,

∂h

∂t
= F + η(x, t)

where F is the constant flux of particles and η is the uncorrelated noise
satisfying,

< η(x, t) >= 0, < η(x, t)η(x′, t′) >= 2Dδd(x− x′)δ(t− t′)
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Figure 2: Surface height profile plotted after every 6000 depositions
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Figure 3: Surface width vs log(time) averaged over 100 simulations for L =
200. Log scale used on y axis
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Integrating, we get,

h(x, t) = Ft+

∫ t

o

dt′η(x, t′)

< h(x, t) >= 0 < h2(x, t) >= F 2t2 + 2Dt

Therefore,
w2(t) = 2Dt =⇒ β = 2

β = 0.498± 0.003 is found from simulations.

Edward-Wilkinson equation

In this section, the linear EW equation is discussed. First the corresponding
discrete model called random deposition with surface relaxation is presented.

In order to account for the finite surface diffusion which exists in most
of the realistic situations, in RDSR a deposited particle is allowed to diffuse
around on the surface within a prescribed region about the column in which
it was dropped until it finds the column with the smallest height. At this
point the particle sticks to the top of that column and becomes part of the
aggregate. This gives rise to correlations among different columns and leads
to saturation of the width. Since, the results are found to be independent of
extent of the allowed region of diffusion, only nearest-neighbor diffusion was
allowed in the simulations. Periodic conditions are applied at the two ends.

Table 1: β for different L values

L β

32 0.23
64 0.22
128 0.24
256 0.25

Values of the exponents found by simulations are,

α = 0.48± 0.01 β = 0.23± 0.02 z = 2.07± 0.10

The general form of growth equation is given by,

∂h(x, t)

∂t
= G(h,x, t) + η(x, t)
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Figure 4: RDSR[1]
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Figure 5: log(width) vs log(time) for L = 128 averaged over 100 simulations.
As indicated in [3] there are three parts to this curve. Slope of linear fit
0.238865(±0.0005) is close to the theoretical value of β = 0.25
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Figure 6: Width vs log(time) averaged over 100 simulations. Log scale used
on y axis
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Figure 8: log(width) vs log(time). Slope of the linear fit is 0.48(±0.01)

where η has the same properties as before. The form of the function G(h, x, t)
can be deduced from symmetry arguments. A surface in equilibrium should
be invariant under the transformations,

t→ t+ δt

h→ h+ δh

x→ x + δx

This means that the surface is independent of the origin of the coordinate
system as well as the origin of time, since we should be able to study a surface
from any point and any time and it should still behave consistently. For a
surface not accounting for empty spaces inside the interface, it should also
be symmetric about the origin of the coordinate system and the mean height
which suggest invariance under the transformations,

h→ −h

x→ −x

Thus the allowed terms are,

∂h(x, t)

∂t
= ∇2h+∇4h+ ...+ (∇2h)(∇h)2 + ...+ (∇2kh)(∇h)2j + η(x, t)
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In the hydrodynamic limit, higher order derivatives should be less impor-
tant compared to the lowest order derivatives, which can be confirmed using
scaling arguments. Renormalization group theory can be used to prove that
excluding higher order terms does not alter the values of critical exponents.
Thus the simplest equation is given by,

∂h(x, t)

∂t
= ν∇2h+ η(x, t)

This linear Langevin equation is called the Edward-Wilkinson equation. ν
is called the surface tension. The ∇2h term gives rise to diffusion along the
surface. The average velocity of the interface is zero.

As EW equation is linear it can be solved exactly, but it is possible to
extract the critical exponents from the equation using scaling arguments.
Under the transformations,

x→ bx, h→ bαh, t→ bzt

the equation should remain invariant1. Substituting these relations in the
EW equation leads to,

∂h(x, t)

∂t
= νbz−2∇2h+ b−d/2+z/2−αη(x, t)

Thus we get,

α =
2− d

2
β =

2− d
4

z = 2

Exact solution obtained by fourier transforming gives,

< h(x, t)h(x′, t′) >=
D

2ν
|x− x′|2−df(ν

|t− t′|
|x− x′|2

)

which, gives the same values for the exponents. The values of exponents
obtained from RDSR model and the EW equation match closely. Thus they
belong to the same universality class known as the EW class.

Kardar-Parisi-Zhang Equation

First lets discuss the discrete ballistic deposition model (BD). A random
lattice site is chosen, and a particle is deposited each time step. If the surface
is higher at the points next to this chosen point, the particle will stick next

1It is not obvious that ν and D remain unchanged after scaling. This can be justified
using dynamic renormalization group theory.
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Figure 9: BD[1]

to the highest of these points, otherwise, it will stick to the surface at the
same site.

h(i) = max[(h(i) + 1, h(i− 1), h(i+ 1)]

Again periodic conditions are applied at endpoints. For smaller values of L,
the domain of power law growth is very small, so it’s hard to calculate β
accurately. While this was true of the RDSR model too, here the L values
are very large and take very long to saturate. Due to system hardware
limitations it was not possible to do large scale simulations as done in [4]. So
agreement with the theoretical values is not as good as for RDSR. Values

Table 2: β for different L values

L β

256 0.28
512 0.31
1024 0.30

of the exponents found by simulations are,

α = 0.42± 0.02 β = 0.29± 0.02 z = 1.45± 0.10

EW does not account for growth that occurs at local normals of the surface.
For a growth rate v along the surface normal, the increase in height is found
to be,

δh = vδt(a+∇h2)61/2
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Figure 10: log(width) vs log(time) for L = 512 averaged over 50 simulations.
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Figure 13: Scaled width vs log(t). Log scale used on y axis
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Figure 14: BD aggregate. Illustration of lateral propagation of correlations.
Initially the surface has a peak in the middle.

for |∇h| << 1,
∂h(x, t)

∂t
= v + v(∇h)2 + η(x, t)

The (∇h)2 term represents lateral growth observed on BD. The KPZ equation
is,

∂h(x, t)

∂t
= ν∇2h+

λ

2
(∇h)2 + η(x, t)

Due to the lateral growth property the h→ −h symmetry is broken in KPZ
equation. An interface governed by the KPZ equation has nonzero velocity
even in the absence of an external driving force unlike the EW equation. The
material added by the nonlinear term generates the excess velocity.

Using the same scaling arguments as before gives,

∂h(x, t)

∂t
= νbz−2∇2h+

λ

2
bα+z−2(∇h)2 + b−d/2+z/2−αη(x, t)

This provides three scaling relations for the two exponents, thereby overde-
termining them. Also in this case the constants change under rescaling. The
correct values of the exponents can be found from renormalization theory as
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Figure 15: Growth normal to the surface[1]

(in 1+1 dimension);

α =
1

2
, β =

1

3
, z =

3

2
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