Extrapolation techniques to improve the scaling of electronic structure

Ankit Mahajan

Department of Physics, IIT Bombay

Ankit Mahajan Composite electronic structure

DMRG

More is difficult! What can we do? Tasks

Outline

- More is difficult!
- What can we do?
- Tasks
- 2 PIE-ONION
 - What is PIE-ONIOM?
 - How is it implemented?
 - BOMD results
- $\bigcirc \pi$ interactions
 - Introduction
 - Dimers
 - Trimer and tetramer
- 4 DMRG
 - MPS
 - Extrapolation

-

____ ▶

More is difficult! What can we do? Tasks

More is difficult!

Source: Thom A ECIOMC. (Un)linked Stochastic Coupled Cluster Theory and Other Animals Ankit Mahajan Composite electronic structure

More is difficult! What can we do? Tasks

What can we do?

• Come up with new methods: DMRG

æ

< 日 > < 同 > < 三 > < 三 >

More is difficult! What can we do? Tasks

What can we do?

• Come up with new methods: DMRG

• Improve existing ones: novel DFT functionals, improvements to MP2

< A >

A B M A B M

More is difficult! What can we do? Tasks

What can we do?

• Come up with new methods: DMRG

 Improve existing ones: novel DFT functionals, improvements to MP2

• Composite approaches: make a series of systematic approximations and assemble to extrapolate to an accurate result

ヨト イヨト

More is difficult! What can we do? Tasks

What can we do?

• Come up with new methods: DMRG

 Improve existing ones: novel DFT functionals, improvements to MP2

• Composite approaches: make a series of systematic approximations and assemble to extrapolate to an accurate result

ヨト イヨト

More is difficult! What can we do? Tasks

 Doing dynamics with DMRG: Analytic DMRG gradients available in ORCA
Focus on strongly correlated systems

< 日 > < 同 > < 三 > < 三 >

More is difficult! What can we do? Tasks

 Doing dynamics with DMRG: Analytic DMRG gradients available in ORCA
Focus on strongly correlated systems

< 日 > < 同 > < 三 > < 三 >

More is difficult! What can we do? Tasks

 Doing dynamics with DMRG: Analytic DMRG gradients available in ORCA
Focus on strongly correlated systems
Have done static DMRG

More is difficult! What can we do? Tasks

 Doing dynamics with DMRG: Analytic DMRG gradients available in ORCA
Focus on strongly correlated systems
Have done static DMRG

 π-stacking systems: Accounting for non-covalent bonded interactions Benzene trimers, tetramers, etc.

B b 4

More is difficult! What can we do? Tasks

 Doing dynamics with DMRG: Analytic DMRG gradients available in ORCA
Focus on strongly correlated systems
Have done static DMRG

 π-stacking systems: Accounting for non-covalent bonded interactions Benzene trimers, tetramers, etc.

What is PIE-ONIOM? How is it implemented? BOMD results

Outline

- More is difficult!
- What can we do?
- Tasks
- **2** PIE-ONIOM
 - What is PIE-ONIOM?
 - How is it implemented?
 - BOMD results
- 3 π interactions
 - Introduction
 - Dimers
 - Trimer and tetramer
- 4 DMRG
 - MPS
 - Extrapolation

-

____ ▶

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

Hybrid methods Divide into layers

▲ □ ▶ ▲ □ ▶ ▲

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

A ►

∃ >

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

PIE-ONIOM Divide into layered fragments

Ankit Mahajan Composite electronic structure

< 口 > < 同 >

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

$$E_{PIE-ONIOM} = [E^{high}(A) + E^{high}(B) - E^{high}(A \cap B)]$$

イロン イロン イヨン イヨン

æ

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

$$E_{PIE-ONIOM} = [E^{high}(A) + E^{high}(B) - E^{high}(A \cap B)] + E^{low}(A \cup B) - [E^{low}(A) + E^{low}(B) - E^{low}(A \cap B)]$$

イロン イロン イヨン イヨン

æ

What is PIE-ONIOM? How is it implemented? BOMD results

What is PIE-ONIOM?

$$E_{PIE-ONIOM} = [E^{high}(A) + E^{high}(B) - E^{high}(A \cap B)] + E^{low}(A \cup B) - [E^{low}(A) + E^{low}(B) - E^{low}(A \cap B)]$$

Generalize with the principle of inclusion-exclusion

< 日 > < 同 > < 三 > < 三 >

What is PIE-ONIOM? How is it implemented? BOMD results

How is it implemented?

Calculate fragments

Ankit Mahajan Composite electronic structure

э

<ロト <部ト < 注ト < 注ト

What is PIE-ONIOM? How is it implemented? BOMD results

How is it implemented?

< 同 ▶

What is PIE-ONIOM? How is it implemented? BOMD results

How is it implemented?

< 17 ▶

A B M A B M

What is PIE-ONIOM? How is it implemented? BOMD results

How is it implemented?

PIE-ONIOM π interactions DMRG What is PIE-ONIOM? How is it implemented? BOMD results

Born Oppenheimer Molecular Dynamics

PIE-ONIOM π interactions DMRG What is PIE-ONIOM? How is it implemented? BOMD results

Born Oppenheimer Molecular Dynamics

$$M_I \ddot{\mathsf{R}}_{\mathsf{I}}(t) = -\nabla_I \min\{\int \Psi^* \hat{H} \Psi d\mathbf{r}\}$$

 $\hat{H} \Psi_0 = E_0 \Psi_0$

< 日 > < 同 > < 三 > < 三 >

What is PIE-ONIOM? How is it implemented? BOMD results

Born Oppenheimer Molecular Dynamics

$$M_I \ddot{\mathsf{R}}_{\mathsf{I}}(t) = -\nabla_I \min\{\int \Psi^* \hat{H} \Psi d\mathbf{r}\}$$

 $\hat{H} \Psi_0 = E_0 \Psi_0$

$$I_{V}(\omega) = \lim_{T \to \infty} \int_{t=0}^{t=T} exp(-i\omega t) \langle \mathbf{V}(0).\mathbf{V}(t) \rangle dt$$

(日) (同) (三) (三)

What is PIE-ONIOM? How is it implemented? BOMD results

Vibrational density of states

Ankit Mahajan Composite electronic structure

Introduction Dimers Trimer and tetramer

Outline

- More is difficult!
- What can we do?
- Tasks
- 2 PIE-ONION
 - What is PIE-ONIOM?
 - How is it implemented?
 - BOMD results
- $\bigcirc \pi$ interactions
 - Introduction
 - Dimers
 - Trimer and tetramer
- 4 DMRG
 - MPS
 - Extrapolation

글 🕨 🖌 글

____ ▶

Introduction Dimers Trimer and tetramer

Introduction

• Weak but important: found in proteins, DNA molecules, drugs, enzymes, etc., govern processes like condensation, crystallization, catalysis, solvation, etc.

Source: http://www.chem.purdue.edu/Slipchenko/research/

A D

Introduction Dimers Trimer and tetramer

Introduction

• Weak but important: found in proteins, DNA molecules, drugs, enzymes, etc., govern processes like condensation, crystallization, catalysis, solvation, etc.

Source: http://www.chem.purdue.edu/Slipchenko/research/

• Not amenable to mean field treatments; non-local, correlated methods necessary

Introduction Dimers Trimer and tetramer

Dimers

(a) Sandwich (D_{2h}) (b) T-shaped (C_{2v})

æ

<ロト <部ト < 注ト < 注ト

Introduction Dimers Trimer and tetramer

Dimers

(c) Sandwich (D_{2h}) (d) T-shaped (C_{2v})

Rigid monomers

æ

<ロト <部ト < 注ト < 注ト

Introduction Dimers Trimer and tetramer

Method dependence

$$E_{int} = E(AB; AB) - E(A; A) - E(B; B)$$

Figure: Sandwich Dimer PES scans (using aug-cc-pVDZ basis set, not CP corrected)

Introduction Dimers Trimer and tetramer

Basis dependence

$$E_{int}^{CP} = E(AB; AB) - E(A; AB) - E(B; AB)$$

Figure: Sandwich Dimer PES scans ('XZ' denotes aug-cc-pVXZ basis set)

Ankit Mahajan Composite electronic structure

Introduction Dimers Trimer and tetramer

T-shaped

Figure: T-shaped Dimer PES scans (using aug-cc-pVDZ basis set)

P

Introduction Dimers Trimer and tetramer

Many body decomposition

Interaction energy of the cluster $f_1 f_2 \dots f_n$:

$$E_{int} = [E_1 + E_2 + \dots + E_n] - \sum_{i=1}^N E[f_i]$$

(日) (同) (三) (三)

Introduction Dimers Trimer and tetramer

Many body decomposition

Interaction energy of the cluster $f_1 f_2 \dots f_n$:

$$E_{int} = [E_1 + E_2 + \dots + E_n] - \sum_{i=1}^N E[f_i]$$

$$E_1 = \sum_{i=1}^n E[f_i^*]$$

(日) (同) (三) (三)

Introduction Dimers Trimer and tetramer

Many body decomposition

Interaction energy of the cluster $f_1 f_2 \dots f_n$:

$$E_{int} = [E_1 + E_2 + \dots + E_n] - \sum_{i=1}^N E[f_i]$$

$$E_1 = \sum_{i=1}^n E[f_i^*]$$

$$E_{2} = \sum_{i=1}^{n-1} \sum_{j>i}^{n} \Delta_{2} E[f_{i}f_{j}^{*}]$$

 $\Delta_2 E[f_i f_j^*] = E[f_i f_j^*] - (E[f_i^*] + E[f_j^*])$

<ロ> <同> <同> < 回> < 回>

Introduction Dimers Trimer and tetramer

Trimer

• Tauer et al. showed that in benzene π clusters neighboring two-body terms dominate the interaction energy

- ● ● ●

Introduction Dimers Trimer and tetramer

Trimer

- Tauer et al. showed that in benzene π clusters neighboring two-body terms dominate the interaction energy
- PIE-ONIOM approach with overlapping dimer fragments could be effective

Introduction Dimers Trimer and tetramer

Trimer PES

Figure: Trimer PES scans for the sandwich geometry

< □ > < 同 >

∃ → < ∃</p>

Introduction Dimers Trimer and tetramer

Tetramer

Figure: Tetramer PES scans for the sandwich geometry

MPS Extrapolation

Outline

- More is difficult!
- What can we do?
- Tasks
- 2 PIE-ONION
 - What is PIE-ONIOM?
 - How is it implemented?
 - BOMD results
- $\bigcirc \pi$ interactions
 - Introduction
 - Dimers
 - Trimer and tetramer
- 4 DMRG
 - MPS
 - Extrapolation

MPS Extrapolation

Matrix product states

• A general state of a multi-electron system can be written as

$$|\psi\rangle = \sum_{n_{j\sigma}} C_{n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}} |n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}\rangle$$

< 17 ▶

A B + A B +

MPS Extrapolation

Matrix product states

• A general state of a multi-electron system can be written as

$$|\psi\rangle = \sum_{n_{j\sigma}} C_{n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}} |n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}\rangle$$

• Following multiple SVD's

$$C_{n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}} = \sum_{\alpha_1,\dots,\alpha_{L-1}} A[1]_{\alpha_1}^{n_{1\uparrow}n_{1\downarrow}} A[2]_{\alpha_1;\alpha_2}^{n_{2\uparrow}n_{2\downarrow}}\dots A[2]_{\alpha_{L-1}}^{n_{L\uparrow}n_{L\downarrow}}$$

A D

MPS Extrapolation

Matrix product states

• A general state of a multi-electron system can be written as

$$|\psi\rangle = \sum_{n_{j\sigma}} C_{n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}} |n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}\rangle$$

• Following multiple SVD's

$$C_{n_{1\uparrow}n_{1\downarrow}\dots n_{L\uparrow}n_{L\downarrow}} = \sum_{\alpha_1,\dots,\alpha_{L-1}} A[1]^{n_{1\uparrow}n_{1\downarrow}}_{\alpha_1} A[2]^{n_{2\uparrow}n_{2\downarrow}}_{\alpha_1;\alpha_2}\dots A[2]^{n_{L\uparrow}n_{L\downarrow}}_{\alpha_{L-1}}$$

• DMRG variationally optimizes this matrix product with truncated virtual dimensions

4 3 5 4

MPS Extrapolation

Extrapolation

• Large virtual dimension (D) prohibitive

э

<ロト <部ト < 注ト < 注ト

MPS Extrapolation

Extrapolation

۲

• Large virtual dimension (D) prohibitive

$$E_D - E_{FCI} = Cw_D^{disc}$$

Energy is a linear functional on the reduced density matrix

< 1 →

→ □ → → □ →

MPS Extrapolation

Extrapolation

۲

• Large virtual dimension (D) prohibitive

$$E_D - E_{FCI} = Cw_D^{disc}$$

Energy is a linear functional on the reduced density matrix

★ ∃ →

A D

MPS Extrapolation

TPA

<ロ> <同> <同> < 回> < 回>

æ

MPS Extrapolation

Acene

æ

MPS Extrapolation

TZGND2

