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Figure 1: Falling cat

Introduction
A deformable body with zero angular momentum can change orientation by
undergoing a sequence of deformations. For example, a cat dropped upside-
down manages to land on its feet without any external torques (in COM
frame). It does this by undergoing shape changes. In the paper, this rotation
is naturally expressed in a geometric form - a gauge potential (connection)
over the configuration space. This change in orientation is shown to be a
manifestation of conservation of angular momentum.

Gauge theories form a corner stone of theoretical particle physics (stan-
dard model). When applied to processes at subatomic level, gauge theories
are rather abstract and non-intuitive. But the same framework can be used to
describe the motion of deformable bodies, which is much easier to visualize,
and thus provides a clearer view of the concepts involved.
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The Setting
Let’s first formulate the problem in concrete mathematical terms. Consider
a deformable body of fixed mass. For the sake of simplicity let’s ignore trans-
lation (equivalent to working in COM frame in absence of external forces).
We have two relevant spaces: the space of unoriented shapes and the space of
oriented shapes. The former can be thought of as the latter modulo rotations
about COM. If the body undergoes a sequence of deformations, it will change
orientation so as to conserve angular momentum. It can be shown that this
change in orientation is independent of the time rate of change of shape.
Even though this appears straightforward at first glance, there is a subtle
problem underneath the simple appearance. How can we compare orienta-
tions of different oriented shapes? Mathematical structures called principal
bundles and connections, known as gauge potentials, on these structures pro-
vide a natural setting for addressing this problem. In the following sections,
these mathematical concepts are briefly reviewed. It will be shown that the
problem of dynamics of deformable bodies can be cast and solved in terms
of these structures.

Principal Fiber Bundles
Definition: A C∞ principal fiber bundle consists of a manifold Q (called
the total space), a Lie group G, a base manifold M , a smooth right action
σ : Q × G → Q and a smooth projection map π : Q → M such that the
following conditions are true:

• σ preserves the fibers of π,

π(q.g) = π(q)

for all q ∈ Q and g ∈ G

• For each x ∈M there exists an open neighborhood V of x in M and a
homeomorphism Ψ : π−1(V )→ V ×G of the form,

Ψ(q) = (π(q), ψ(q))

where ψ : π−1(V )→ G satisfies

ψ(q.g) = ψ(q)g
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Figure 2: Hopf bundle[5]

Q is said to be a principal G-bundle over M and this is indicated diagram-
matically by writing G ↪→ Q→M .

A principal G-bundle is called trivial if it is globally isomorphic to M×G.
However, in general principal bundles are only locally trivial.

For each x ∈ M , π−1(x) is a closed submanifold of Q, called the fiber
over x. If u is a point of π−1(x), then π−1(x) is the set of points u.a, a ∈ G
and is called the fiber through u. Every fiber is diffeomorphic to G. Each
fiber can be thought of as a copy of G without a specified identity element
(such structures are called torsors, a notion similar to affine spaces). M is
the quotient space of Q by the equivalence relation induced by G, M = Q/G.

Example of a nontrivial principal bundle: The group SU(2) can be
described as a U(1)-bundle over S2. This is the famous Hopf bundle (2).

Configuration space (oriented shapes) of a deformable body in three di-
mensions is a principal fiber bundle with M as the shape space and G as
SO(3). In this case the definitions of π and σ are obvious.

Choice of Gauge
Equipped with the formalism of principal bundles, we can now appropriately
formulate the problem of dynamics of deformable bodies. We need to find
a way to compare orientations of different shapes. This can be achieved by
assigning a standard orientation, a set of body fixed axes, to all shapes. All
other orientations can be measured with respect to the standard one. Un-
fortunately, there may not exist a canonical choice of standard orientations,
in general. It should be noted that, as long as it is sufficiently smooth, the
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particular choice of standard orientations does not affect the final result. So
we are at a liberty make a convenient choice of an orientation, in a smooth
manner, over the space of unoriented shapes. This is known as the choice of
gauge (also known as a cross section). Another subtlety needs to addressed
here - does such a smooth choice always exist? It turns out, in fact, a global
choice of gauge cannot be made for nontrivial bundles.

Theorem: A principal G-bundle Q : Q → M is trivial iff it admits a
global cross-section s : M → Q.

Thus in general a choice of gauge can only be made locally. It might be
tempting, at this point, to say that the space of oriented shapes is isomorphic
to the Cartesian product of the space of unoriented shapes and the rotation
group, so why bother with the principal bundle? To answer this, note that
this isomorphism is not canonical as explained before. In modeling the con-
figuration space as a trivial bundle one has to relinquish the important gauge
symmetry inherent to the problem. As we will see in the following sections,
the principal bundle formalism exploits this gauge invariance symmetry to
produce an elegant geometric theory of dynamics.

Connections on principal bundles
We would like to separate the infinitesimal orientation change caused by
shape change from that caused by rigid rotation. Gauge potentials or con-
nections afford a way to do just that.

Given any point q ∈ Q, let σq(g) = q.g. Then we have the following
composition of maps,

G
σq−→ Q

π−→M

The map σq is one-to-one, the map π is onto, and π−1(x) = image(σq) where
π(q) = x. Corresponding to this we have the following sequence of derivative
maps,

G σq∗id−−−→ TqQ
π∗q−−→ TxM

This is an exact sequence of linear maps: σq∗id is one-to-one, π∗q is onto and
ker(π∗q) = image(σq∗id).

Definition: The image of σq∗id is called the “vertical subspace” Vq at q.

Vectors in Vq are tangent to the fiber through q. We have Vq = Tq(π−1(x)).
Note that σq∗id provides a canonical isomorphism between G and Vq.
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Figure 3: Vertical and Horizontal subspaces[1]

In the case of a deformable body in three-space, G = SO(3), and G =
so(3). Thus G can be identified with R3. A vector A ∈ G represents an
instantaneous angular velocity. The infinitesimal action σq∗id is the infinites-
imal rotation of the configuration q about the axis A.

σq∗id(A)(y) = A× q(y)

Here the y’s denote the points of the deformable body, so that q(y) ∈ R3

is the initial position of the body point labeled y when the body is in the
configuration q. Vq represents the space of all rigid transformations of q.

We now give two equivalent definitions of a connection on Q.

Definition 1:A horizontal distribution is a smoothly varying family

Hq ∈ TqQ

of linear subspaces complementary to the vertical distribution and invariant
under the G action. Thus

TqQ = Hq ⊕ Vq

and

σg∗(Hq) = Hq.g

Definition 2: A G-valued connection one-form is a smoothly varying family
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ωq : TqQ→ G
such that,

ωq(σq∗id(A)) = A

(σg)∗ω = adg−1 ◦ ω

Note that, Hq = ker ωq.

Mechanical connection[4]
Suppose Q is a Riemannian manifold and that G acts on Q by isometries.
We define the horizontal distribution to be:

Hq = Vq⊥

the orthogonal complement to the vertical space. Invariance under the action
of G follows immediately from the fact that G are isometries. This connection
is called the mechanical connection when the metric on Q is the kinetic energy
metric, induced by the inner product

< δq1, δq2 >=
∫
< δq1(y), δq2(y) > dm(y)

dm is the mass distribution and δqi for i = 1, 2, are two deformations of the
body, i.e. δqi ∈ TqQ.

If δq2 ∈ Vq then,
δq2(y) = A× q(y)

< δq1, δq2 >=< A,M(q, δq1) >

where,
M(q, δq1) =

∫
q(y)× δq1(y) > dm(y)

is the expression for the total angular momentum associated to the de-
formation δq1 of the configuaration q. It follows that δq1 is horizontal iff
M(q, δq1) = 0. Thus,

Hq = {δq ∈ TqQ : M(q, δq) = 0}
If the horizontal distribution is defined by the vanishing of the angular

momentum M then the connection one-form ω has the same kernel as M .
Consequently we must have :

ωq = RqM(q, )
where Rq is invertible. R can be shown to be the inverse of locked moment
of inertia tensor. Thus,

ω = I−1M
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Figure 4: Horizontal lift

Parallel transport
Definition: Let γ : [0, 1]→M be a curve in the base manifold (a base
curve). A curve γQ : [0, 1]→ Q is called the horizontal lift of γ if

• π(γQ) = γ

• All tangent vectors XQ to γQ are horizontal: XQ ∈ HγQ
Q

Theorem: Let γ : [0, 1]→M be a base curve and let q ∈ π−1(γ(0)). Given
a connection, there exists a unique horizontal lift γQ such that γQ(0) = q.

This means that we can (given a connection) uniquely define the parallel
transport of a point q ∈ Q along a curve γ in M by moving it along the
unique horizontal lift of γ through q. We saw in the last section that motions
of the deformable body which lie in the horizontal subspace have zero angular
momentum. Given a path in the shape space of the deformable body, the
unique path horizontally lifted to the configuration space will be its path
in real space. Thus the condition of angular momentum conservation can
be expressed geometrically in terms of parallel transport on the principal
bundle.
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